Pesquisar

segunda-feira, 6 de junho de 2016

SISTEMA NERVOSO



 O sistema nervoso permite que o corpo reaja a modificações contínuas dos ambientes interno e externo. Também controla e integra as várias atividades do corpo, como a circulação e a respiração. Para fins descritivos, o sistema nervoso é dividido:

• Estruturalmente, em sistema nervoso central* (SNC), formado pelo encéfalo e medula espinal, e sistema nervoso periférico* (SNP), o restante do sistema nervoso que não pertence ao SNC
• Funcionalmente, em divisão somática do sistema nervoso (DSSN) e divisão autônoma do sistema nervoso (DASN).
O tecido nervoso tem dois tipos principais de células: neurônios (células nervosas) e neuróglia (células gliais), que sustentam os neurônios.
• Os neurônios são as unidades estruturais e funcionais do sistema nervoso especializadas para comunicação rápida (Figuras I.28 e I.29). Um neurônio é formado por um corpo celular com prolongamentos denominados dendritos e um axônio, que conduzem os impulsos que entram e saem do corpo celular, respectivamente. A mielina, camadas de lipídios e substâncias proteicas formam uma bainha de mielina ao redor de alguns axônios, propiciando grande aumento da velocidade de condução do impulso. A maioria dos neurônios do sistema nervoso (e do sistema nervoso periférico, em especial) pertence a dois tipos (Figura I.28):

1. Os neurônios motores multipolares têm dois ou mais dendritos e um axônio, que pode ter um ou mais ramos colaterais. São o tipo mais comum de neurônio no sistema nervoso (SNC e SNP). Todos os neurônios motores que controlam o músculo esquelético e aqueles que formam a DASN são neurônios multipolares
2. Neurônios sensitivos pseudounipolares têm um prolongamento curto, aparentemente único (mas, na verdade, duplo) que se estende a partir do corpo celular. Esse processo comum divide-se em um prolongamento periférico, que conduz impulsos do órgão receptor (tato, dor ou sensores térmicos na pele, por exemplo) em direção ao corpo celular, e um prolongamento central que vai do corpo celular até o SNC. Os corpos celulares dos neurônios pseudounipolares estão situados fora do SNC nos gânglios sensitivos e, portanto, fazem parte do SNP.
A comunicação entre os neurônios é feita nos pontos de contato entre eles, as sinapses (Figura I.29). A comunicação ocorre por meio de neurotransmissores, substâncias químicas liberadas ou secretadas por um neurônio, que podem excitar ou inibir outro neurônio, continuando ou interrompendo a transmissão de impulsos ou a resposta a eles.

• A neuróglia (células gliais ou glia), aproximadamente cinco vezes mais abundante que os neurônios, é formada por células não neuronais, não excitáveis, que formam um importante componente do tecido nervoso, sustentando, isolando e nutrindo os neurônios. No SNC, a neuróglia inclui oligodendróglia, astrócitos, células ependimárias e micróglia (pequenas células gliais). No SNP, a neuróglia inclui células-satélite ao redor dos neurônios nos gânglios espinais (raiz posterior) e autônomos e as células do neurolema (de Schwann) (Figuras 1.28 e 1.29). 

Figura I.28 Neurônios. A figura mostra os tipos mais comuns de neurônios. A. Neurônios motores multipolares. Todos os neurônios motores que controlam os músculos esqueléticos e aqueles que formam a DASN são multipolares. B. Com exceção de alguns sentidos especiais (p. ex., olfato e visão), todos os neurônios sensitivos do SNP são neurônios pseudounipolares com corpos celulares situados em gânglios sensitivos.



Figura I.29 Sinapse de neurônios motores multipolares. Um neurônio influencia outros nas sinapses. Detalhe: Estrutura detalhada de uma sinapse axodendrítica. Os neurotransmissores difundem-se através da fenda sináptica entre as duas células e ligam-se aos receptores.




Parte central do sistema nervoso

 A parte central do sistema nervoso ou sistema nervoso central (SNC) é formada pelo encéfalo e pela medula espinal. Os principais papéis do SNC são integrar e coordenar os sinais neurais que chegam e saem e realizar funções mentais superiores, como o raciocínio e o aprendizado. 

 O núcleo é um conjunto de corpos de células nervosas no SNC. Um feixe de fibras nervosas (axônios) no SNC que une núcleos vizinhos ou distantes do córtex cerebral é um trato. O encéfalo e a medula espinal são formados por substância cinzenta e substância branca. Os corpos dos neurônios situam-se na parte interna e constituem a substância cinzenta; os sistemas de tratos de fibras interconectantes formam a substância branca. Em cortes transversais da medula espinal, a substância cinzenta apresenta-se como uma área com formato aproximado de uma letra H incrustada em uma matriz de substância branca. Os braços do H são os cornos; portanto, existem cornos cinzentos posteriores (dorsais) e anteriores (ventrais) direito e esquerdo. 

Três camadas membranosas — pia-máter, aracnoide-máter e dura-máter — formam, juntas, as meninges. As meninges e o líquido cerebrospinal (LCS) circundam e protegem o SNC. O encéfalo e a medula espinal são revestidos em sua superfície externa pela meninge mais interna, um revestimento delicado e transparente, a pia-máter. O LCS está localizado entre a pia- máter e a aracnoide-máter. Externamente à pia-máter e à aracnoide-máter está a dura-máter espessa e rígida. A dura-máter do encéfalo está relacionada com a face interna do osso do neurocrânio adjacente; a dura-máter da medula espinal é separada do osso adjacente da coluna vertebral por um espaço extradural cheio de gordura.

Parte periférica do sistema nervoso
:
A parte periféria do sistema nervoso ou sistema nervoso periférico (SNP) é formada por fibras nervosas e corpos celulares fora do SNC que conduzem impulsos que chegam ou saem do sistema nervoso central (Figura I.30). O sistema nervoso periférico é organizado em nervos que unem a parte central às estruturas periféricas.
Uma fibra nervosa é formada por um axônio, seu neurolema, e circunda o tecido conjuntivo endoneural (Figura I.32). O neurolema é formado pelas membranas celulares das células de Schwann que circundam imediatamente o axônio, separando- o de outros axônios. No sistema nervoso periférico o neurolema pode assumir duas formas, criando duas classes de fibras nervosas:
1. O neurolema das fibras nervosas mielínicas é formado pelas células de Schwann específicas de um axônio, organizadas em uma série contínua de células de revestimento que formam a mielina.
2. O neurolema das fibras nervosas amielínicas é composto de células de Schwann que não formam uma série aparente; há vários axônios incorporados separadamente ao citoplasma de cada célula. Essas células de Schwann não produzem mielina. A maioria das fibras nos nervos cutâneos (nervos responsáveis pela sensibilidade cutânea) é amielínica.

Um nervo consiste em:

• Um feixe de fibras nervosas fora do SNC (ou um “feixe de fibras reunidas”, ou fascículos, no caso de um nervo maior).
• Revestimento de tecido conjuntivo que circunda e une as fibras nervosas e os fascículos e
• Vasos sanguíneos (vasa nervorum) que nutrem as fibras nervosas e seus revestimentos (Figura I.33).

Os nervos são muito fortes e resilientes, porque as fibras nervosas são sustentadas e protegidas por três revestimentos de tecido conjuntivo:
1. Endoneuro, tecido conjuntivo delicado que circunda imediatamente as células do neurolema e os axônios.
2. Perineuro, uma camada de tecido conjuntivo denso que envolve um fascículo de fibras nervosas periféricas, proporcionando uma barreira efetiva contra a penetração das fibras nervosas por substâncias estranhas.
3. Epineuro, uma bainha de tecido conjuntivo espesso que circunda e encerra um feixe de fascículos, formando o revestimento mais externo do nervo; inclui tecido adiposo, vasos sanguíneos e linfáticos.
.
Os nervos são organizados como um cabo telefônico: os axônios assemelham-se a fios individuais isolados pelo neurolema e endoneuro; os fios isolados são reunidos pelo perineuro e os feixes são circundados pelo epineuro, que forma o revestimento externo do cabo (Figura I.33). É importante distinguir entre fibras nervosas e nervos, que às vezes são representados em diagramas como sendo uma única e mesma coisa. 

Figura I.30 Organização básica do sistema nervoso. O SNC é formado pelo encéfalo e pela medula espinal. O SNP é formado pelos nervos e gânglios. Os nervos são cranianos ou espinais (segmentares), ou derivados deles. Exceto na região cervical, cada nervo espinal tem a mesma designação alfanumérica que a vértebra que forma o limite superior de sua saída da coluna vertebral. Na região cervical, cada nervo espinal tem a mesma designação alfanumérica que a vértebra que forma seu limite inferior. O nervo espinal C8 sai entre as vértebras C VII e T I. As intumescências cervical e lombossacral da medula espinal têm relação com a inervação dos membros.


Figura I.31 Medula espinal e meninges. A dura-máter e a aracnoide-máter foram seccionadas e rebatidas para mostrar as raízes posteriores e anteriores e o ligamento denticulado (espessamento bilateral, longitudinal, entalhado da pia-máter que fixa a medula espinal no centro do canal vertebral). A medula espinal é seccionada para mostrar seus cornos de substância cinzenta. As meninges estendem-se ao longo das raízes nervosas e se fundem ao epineuro no ponto onde as raízes posteriores e anteriores se unem, formando as bainhas radiculares durais que revestem os gânglios sensitivos (raiz posterior).


Um conjunto de corpos de células nervosas fora do SNC é um gânglio. Existem gânglios motores (autônomos) e sensitivos.


TIPOS DE NERVOS

 O SNP é contínuo, do ponto de vista anatômico e operacional, com o SNC (Figura I.30). Suas fibras aferentes (sensitivas) conduzem impulsos nervosos dos órgãos dos sentidos (p. ex., os olhos) e dos receptores sensitivos em várias partes do corpo (p. ex., na pele) para o SNC. Suas fibras eferentes (motoras) conduzem impulsos nervosos do SNC para os órgãos efetores (músculos e glândulas).

Figura I.32 Fibras nervosas periféricas mielínicas e amielínicas. As fibras nervosas mielínicas têm uma bainha formada por uma série contínua de células do neurolema (Schwann) que circundam o axônio e formam uma série de segmentos de mielina. Várias fibras nervosas amielínicas são individualmente envolvidas por uma única célula do neurolema que não produz mielina.



Os nervos são cranianos ou espinais, ou derivados deles. 
• Os nervos cranianos saem da cavidade craniana através de forames no crânio e são identificados por um nome descritivo (p. ex., “nervo troclear”) ou por um algarismo romano (p. ex., “NC IV”). Apenas 11 dos 12 pares de nervos cranianos originam-se no encéfalo; o outro par (NC XI) origina-se na parte superior da medula espinal .
• Os nervos espinais (segmentares) saem da coluna vertebral através de forames intervertebrais (Figura I.30). Os nervos espinais originam-se em pares bilaterais de um segmento específico da medula espinal. Todos os 31 segmentos da medula espinal e os 31 pares de nervos que se originam deles são identificados por uma letra e um número (p. ex., “T4”) que designam a região da medula e sua ordem superior-inferior (C, cervical; T, torácica; L, lombar; S, sacral; Co, coccígea). 
Nervos espinais. Inicialmente, os nervos espinais originam-se na medula espinal como radículas (um detalhe que costuma ser omitido nos diagramas para simplificar); as radículas convergem para formar duas raízes nervosas (Figura I.34): 
1. Uma raiz anterior (ventral), formada por fibras motoras (eferentes) que saem dos corpos das células nervosas no corno anterior da substância cinzenta da medula espinal para órgãos efetores situados na periferia.
Figura I.33 Organização e formação da bainha nas fibras nervosas mielínicas. Os nervos são formados por feixes de fibras nervosas, as camadas de tecido conjuntivo que os unem e os vasos sanguíneos (vasa nervorum) que os irrigam. Todos os nervos, exceto os menores, estão organizados em feixes denominados fascículos.





2. Uma raiz posterior (dorsal), formada por fibras sensitivas (aferentes) dos corpos celulares no gânglio (sensitivo) espinal ou gânglio da raiz posterior (dorsal) (geralmente abreviado como “GRD”) que se estendem em direção à periferia até terminações sensitivas e centralmente até o corno posterior de substância cinzenta da medula espinal. 
As raízes nervosas posteriores e anteriores se unem, dentro ou imediatamente proximais ao forame intervertebral, para formar um nervo espinal misto (motor e sensitivo), que se divide imediatamente em dois ramos: um ramo posterior (dorsal) e um ramo anterior (ventral). Como ramos do nervo espinal misto, os ramos posterior e anterior conduzem fibras motoras e sensitivas, bem como seus ramos subsequentes. Os termos nervo motor e nervo sensitivo são quase sempre relativos, referindo-se à maioria dos tipos de fibras conduzidas por aquele nervo. Os nervos que suprem músculos do tronco ou dos membros (nervos motores) também contêm cerca de 40% de fibras sensitivas que conduzem informações álgicas e proprioceptivas. Por outro lado, os nervos cutâneos (sensitivos) contêm fibras motoras que suprem as glândulas sudoríferas e o músculo liso dos vasos sanguíneos e folículos pilosos. 
A área unilateral de pele inervada pelas fibras sensitivas de um único nervo espinal é chamada de dermátomo; a massa muscular unilateral inervada pelas fibras conduzidas por um único nervo espinal é um miótomo (Figura I.35). A partir de estudos clínicos de lesões das raízes posteriores ou nervos espinais, foram elaborados mapas de dermátomos para indicar o padrão comum de inervação cutânea por nervos espinais específicos (Figura I.36). No entanto, a lesão de apenas uma raiz posterior ou nervo espinal raramente resultaria em dormência na área demarcada para aquele nervo nesses mapas porque as fibras conduzidas por nervos espinais adjacentes se superpõem quase completamente enquanto são distribuídas para a pele, proporcionando um tipo de cobertura dupla. Assim, as linhas que indicam os dermátomos nos mapas seriam mais bem representadas por gradações de cor. Em geral, é preciso que haja interrupção de pelo menos dois nervos espinais (ou raízes posteriores) adjacentes para produzir uma área definida de dormência.

Figura I.34 Substância cinzenta da medula espinal, raízes espinais e nervos espinais. As meninges são seccionadas e rebatidas para mostrar a substância cinzenta em formato de H na medula espinal e as radículas e raízes posteriores e anteriores de dois nervos espinais. As radículas posteriores e anteriores entram e saem pelos cornos cinzentos posterior e anterior, respectivamente. As raízes nervosas posteriores e anteriores unem-se distalmente ao gânglio sensitivo para formar um nervo espinal misto, que se divide imediatamente nos ramos posterior e anterior.


Figura I.35 Dermátomos e miótomos. Esquema representativo de um dermátomo (a área unilateral de pele) e um miótomo (a porção unilateral de músculo esquelético) inervados por um único nervo espinal. 



Figura I.36 Dermátomos (inervação cutânea segmentar). Os mapas de dermátomos do corpo baseiam-se na reunião de achados clínicos após lesões dos nervos espinais. O mapa toma como base os estudos de Foerster (1933) e reflete a distribuição anatômica (real) ou a inervação segmentar e a experiência clínica. Outro mapa popular, porém mais esquemático, é o de Keegan e Garrett (1948), que é atraente em razão de seu padrão regular, extrapolado com mais facilidade. O nervo espinal C1 não tem um componente aferente significativo e não supre a pele; portanto, não há representação de dermátomo C1. Observe que, no mapa de Foerster, C5–T1 e L3–S1 estão quase totalmente distribuídos nos membros (isto é, têm pouca ou nenhuma representação no tronco).





Quando emergem dos forames intervertebrais, os nervos espinais são divididos em dois ramos (Figura I.37):
1. Os ramos posteriores (primários) dos nervos espinais enviam fibras nervosas para as articulações sinoviais da coluna vertebral, músculos profundos do dorso e a pele sobrejacente em um padrão segmentar. Como regra geral, os ramos posteriores permanecem separados uns dos outros (não se fundem para formar grandes plexos nervosos somáticos) 

Figura I.37 Distribuição dos nervos espinais. Pouco depois de serem formados pela fusão das raízes posterior e anterior, os nervos espinais dividem-se em ramos anterior e posterior (primários). Os ramos posteriores são distribuídos para as articulações sinoviais da coluna vertebral, músculos profundos do dorso e a pele sobrejacente. A parede anterolateral do corpo remanescente, inclusive os membros, é suprida por ramos anteriores. Os ramos posteriores e os ramos anteriores dos nervos espinais T2–T12 geralmente não se fundem aos ramos de nervos espinais adjacentes para formar plexos. 


2. Os ramos anteriores (primários) dos nervos espinais enviam fibras nervosas para a área muito maior remanescente, formada pelas regiões anterior e lateral do tronco e pelos membros superiores e inferiores. Os ramos anteriores distribuídos exclusivamente para o tronco costumam permanecer separados uns dos outros, também inervando os músculos e a pele em um padrão segmentar (Figuras I.38 e I.39). Entretanto, principalmente em relação à inervação dos membros, a maioria dos ramos anteriores funde-se com um ou mais ramos anteriores adjacentes, formando plexos nervosos (redes) somáticos nos quais suas fibras se misturam e dos quais emerge um novo grupo de nervos periféricos multissegmentares (Figuras I.39 e I.40A e B). Os ramos anteriores dos nervos espinais que participam da formação do plexo enviam fibras para vários nervos periféricos originados no plexo (Figura I.40A); por outro lado, a maioria dos nervos periféricos originados no plexo contém fibras de vários nervos espinais (Figura I.40B). 
Embora os nervos espinais percam sua identidade quando se dividem e se fundem no plexo, as fibras originadas de um segmento específico da medula e conduzidas por um único nervo espinal são basicamente distribuídas para um dermátomo segmentar, embora possam alcançá-lo através de um nervo periférico multissegmentar originado no plexo e que também conduza fibras para todos os dermátomos ou para partes de outros dermátomos adjacentes (Figura I.40C). 

Figura I.38 Distribuição dos nervos cutâneos periféricos. Os mapas da distribuição cutânea dos nervos periféricos baseiam- se na dissecção e são apoiados pelos achados clínicos.




 Assim, é importante distinguir entre a distribuição das fibras conduzidas por nervos espinais (distribuição ou inervação segmentar — isto é, dermátomos e miótomos identificados por uma letra e um número, como “T4”) e das fibras conduzidas por ramos de um plexo (inervação ou distribuição por nervo periférico, identificados com os nomes de nervos periféricos, como “o nervo mediano”) (Figuras I.36 e I.38). O mapeamento da inervação segmentar (dermátomos, determinado pela experiência clínica) e o mapeamento da distribuição dos nervos periféricos (determinado por dissecção dos ramos distais de um nervo nominado) produzem mapas completamente diferentes, exceto pela maior parte do tronco onde, na ausência de formação do plexo, as distribuições segmentar e periférica são iguais. A superposição na distribuição cutânea das fibras nervosas conduzidas por nervos espinais adjacentes também ocorre na distribuição cutânea de fibras nervosas conduzidas por nervos periféricos adjacentes.
Nervos cranianos. Quando se originam do SNC, alguns nervos cranianos conduzem apenas fibras sensitivas, outros têm apenas fibras motoras e ainda outros têm uma mistura dos dois tipos de fibras (Figura I.41). Há comunicação entre os nervos cranianos e entre os nervos cranianos e os nervos (espinais) cervicais superiores; assim, um nervo que inicialmente conduz apenas fibras motoras pode receber fibras sensitivas distalmente em seu trajeto e vice-versa. Com exceção dos dois primeiros (associados ao olfato e à visão), os nervos cranianos que conduzem fibras sensitivas para o encéfalo têm gânglios sensitivos (semelhantes aos gânglios espinais ou gânglios da raiz posterior), onde estão situados os corpos celulares das fibras pseudounipolares. Embora, por definição, o termo dermátomo se aplique apenas aos nervos espinais, é possível identificar e mapear áreas de pele semelhantes supridas por nervos cranianos isolados. Ao contrário do que ocorre nos dermátomos, porém, há pouca superposição na inervação das áreas de pele supridas por nervos cranianos.
Figura I.39 Ramos anteriores dos nervos espinais e sua participação na formação do plexo. Embora os ramos posteriores (não mostrados) geralmente permaneçam separados e sigam um padrão de distribuição segmentar distinto, a maioria dos ramos anteriores (20 dos 31 pares) participa da formação de plexos, responsáveis principalmente pela inervação dos membros. No entanto, os ramos anteriores distribuídos apenas para o tronco geralmente permanecem separados e seguem distribuição segmentar semelhante à distribuição dos ramos posteriores.



FIBRAS SOMÁTICAS E VISCERAIS

Os tipos de fibras conduzidas por nervos cranianos ou espinais são (Figura I.41): 

• Fibras somáticas 

Fibras sensitivas gerais (fibras aferentes somáticas gerais [ASG]) transmitem sensações do corpo para o SNC; podem ser sensações exteroceptivas da pele (dor, temperatura, tato e pressão) ou dor e sensações proprioceptivas dos músculos, tendões e articulações. As sensações proprioceptivas geralmente são subconscientes, informando a posição da articulação e a tensão dos tendões e músculos. Essas informações são associadas a estímulos aferentes do aparelho vestibular da orelha interna, resultando em consciência da orientação do corpo e dos membros no espaço, independentemente de informações visuais .
Fibras motoras somáticas (fibras eferentes somáticas gerais [ESG]) transmitem impulsos para os músculos esqueléticos (voluntários) 
• Fibras viscerais 
Fibras sensitivas viscerais (fibras aferentes viscerais gerais [AVG]) transmitem dor ou sensações reflexas viscerais subconscientes (informações sobre distensão, gases sanguíneos e níveis de pressão arterial, por exemplo) de órgãos ocos e vasos sanguíneos para o SNC 
Fibras motoras viscerais (fibras eferentes viscerais gerais [EVG]) transmitem impulsos para os músculos lisos (involuntários) e tecidos glandulares. Dois tipos de fibras, pré-sinápticas e pós-sinápticas, atuam em conjunto para conduzir impulsos do SNC para o músculo liso ou as glândulas. 

Os dois tipos de fibras sensitivas — sensitivas viscerais e sensitivas gerais — são processos de neurônios pseudounipolares cujos corpos celulares estão localizados fora do SNC em gânglios sensitivos espinais ou cranianos (Figuras I.41 e I.42). As fibras motoras dos nervos são axônios de neurônios multipolares. Os corpos celulares dos neurônios motores somáticos e motores viscerais pré-sinápticos estão localizados na substância cinzenta da medula espinal. Os corpos celulares dos neurônios motores pós-sinápticos estão localizados fora do SNC em gânglios autônomos. 

Além dos tipos de fibras citados, alguns nervos cranianos também conduzem fibras sensitivas especiais para os sentidos especiais (olfato, visão, audição, equilíbrio e paladar). Algumas fibras motoras conduzidas por nervos cranianos para o músculo estriado foram tradicionalmente classificadas como “viscerais especiais”, tomando como base a origem embriológica/filogenética de determinados músculos da cabeça e pescoço; entretanto, como essa designação causa confusão e não é aplicada clinicamente, o termo não será usado aqui. Às vezes essas fibras são denominadas motoras branquiais, referindo-se ao tecido muscular derivado dos arcos faríngeos no embrião.

Figura I.40 Formação do plexo. Ramos anteriores adjacentes fundem-se para formar plexos nos quais suas fibras são trocadas e redistribuídas, formando um novo conjunto de nervos periféricos multissegmentares (nominados). A. As fibras de um único nervo espinal que entra no plexo são distribuídas para vários ramos do plexo. B. Os nervos periféricos derivados do plexo contêm fibras de vários nervos espinais. C. Embora os nervos segmentares se fundam e percam sua identidade quando a formação do plexo resulta em nervos periféricos multissegmentares, o padrão segmentar (de dermátomos) da distribuição das fibras nervosas persiste.



Figura I.41 Inervação somática e visceral através dos nervos espinais, esplâncnicos e cranianos. O sistema motor somático permite o movimento voluntário e reflexo causado por contração dos músculos esqueléticos, como ocorre quando uma pessoa toca um ferro quente.




SISTEMAS NERVOSOS CENTRAL E PERIFÉRICO 
Lesão do SNC
Na maioria dos casos de lesão do encéfalo ou da medula espinal, não há recuperação dos axônios danificados. Os cotos proximais começam a se regenerar, enviando brotos para a área acometida; entretanto, esse crescimento é bloqueado pela proliferação de astrócitos no local da lesão, e os brotos axonais logo se retraem. Consequentemente, a destruição de um trato no SNC causa incapacidade permanente.
Rizotomia
A s raízes posteriores e anteriores são os únicos locais onde há separação entre as fibras motoras e sensitivas de um nervo espinal. Portanto, apenas nesses locais o cirurgião pode fazer a secção seletiva de um elemento funcional para alívio da dor intratável ou da paralisia espástica (rizotomia).
Degeneração neural e isquemia dos nervos
Não há proliferação de neurônios no sistema nervoso do adulto, com exceção daqueles relacionados ao olfato no epitélio olfatório. Portanto, não há substituição de neurônios destruídos por doença ou traumatismo (Hutchins et al.,2002). Quando os nervos periféricos são distendidos, esmagados ou seccionados, os axônios degeneram, principalmente na parte distal à lesão, porque dependem dos corpos celulares para sobreviver. Quando há lesão dos axônios, mas os corpos celulares estão intactos, pode haver regeneração e retorno da função. A chance de sobrevivência é maior quando um nervo é comprimido. A compressão de um nervo costuma causar parestesia, a sensação de formigamento que ocorre, por exemplo, quando uma pessoa permanece sentada com as pernas cruzadas durante muito tempo.
Uma lesão por esmagamento do nervo danifica ou destrói os axônios distais ao local da lesão; entretanto, os corpos celulares dos neurônios geralmente sobrevivem, e o revestimento de tecido conjuntivo do nervo permanece intacto. Não é necessário reparo cirúrgico nesse tipo de lesão neural, pois o revestimento de tecido conjuntivo íntegro guia os axônios em crescimento até seus destinos. A regeneração é menos provável quando há secção do nervo. Há brotamento nas extremidades proximais dos axônios, mas os axônios em crescimento podem não chegar a seus alvos distais. Uma lesão por secção do nervo requer intervenção cirúrgica porque a regeneração do axônio exige a aposição das extremidades seccionadas por suturas do epineuro. Os feixes nervosos individuais são realinhados da forma mais precisa possível. A degeneração 
anterógrada (walleriana) é a degeneração de axônios que são separados de seus corpos celulares. O processo degenerativo inclui o axônio e sua bainha de mielina, embora essa bainha não faça parte do neurônio lesado.
O comprometimento do suprimento sanguíneo de um nervo por longo período pela compressão dos vasos dos nervos (vasa nervorum) (Figura I.33) também pode causar degeneração do nervo. A lesão causada pela isquemia (suprimento sanguíneo inadequado) prolongada de um nervo pode não ser menos grave do que aquela causada por esmagamento ou até mesmo secção do nervo. A “síndrome do sábado à noite”, assim denominada porque ocorre em um indivíduo embriagado que “cai inconsciente” com um membro sobre o braço de uma cadeira ou a beira da cama, é um exemplo de parestesia mais grave, muitas vezes permanente. Esse distúrbio também pode ser causado pelo uso prolongado de um torniquete durante um procedimento cirúrgico. Se a isquemia não for muito prolongada, ocorre dormência ou parestesia temporária. A parestesia transitória é conhecida por qualquer pessoa que tenha recebido uma injeção de anestésico para tratamento dentário.

Pontos-chave


PARTES CENTRAL E PERIFÉRICA DO SISTEMA NERVOSO
O sistema nervoso pode ser funcionalmente dividido em uma parte central (SNC), que consiste no encéfalo e na medula espinal, e uma parte periférica (SNP), formada pelas fibras nervosas e seus corpos celulares situados fora do SNC. ♦ Os neurônios são as unidades funcionais do sistema nervoso. São formados por um corpo celular, dendritos e axônios. ♦ Os axônios neuronais (fibras nervosas) transmitem impulsos para outros neurônios ou para um órgão ou músculo-alvo ou, no caso de nervos sensitivos, transmitem impulsos dos órgãos sensitivos periféricos para o SNC. ♦ A neuróglia é formada pelas células de sustentação, não neuronais, do sistema nervoso. ♦ No SNC, um conjunto de corpos celulares de neurônios é chamado de núcleo; no SNP, os agregados de corpos celulares de neurônios (ou mesmo os corpos celulares solitários) constituem um gânglio. ♦ No SNC, um feixe de fibras nervosas unindo os núcleos é denominado trato; no SNP, um feixe de fibras nervosas, o tecido conjuntivo que as mantém unidas e os vasos sanguíneos que as irrigam (vasa nervorum) constituem um nervo. ♦ Os nervos que saem do crânio são nervos cranianos; aqueles que saem da coluna vertebral são nervos espinais. ♦ Embora alguns nervos cranianos conduzam um único tipo de fibra, a maioria dos nervos conduz diversas fibras viscerais ou somáticas e sensitivas ou motoras.

REFERÊNCIA BIBLIOGRÁFICA:
  MOORE, K.L. - ANATOMIA ORIENTADA PARA A CLÍNICA, 6ªED, 
GUANABARA KOOGAN, 2011. 






quinta-feira, 26 de maio de 2016

SISTEMA LINFÁTICO


 Embora o sistema linfático esteja presente em quase todo o corpo, a maior parte não é visível no cadáver. Ainda assim é essencial para a sobrevivência. O conhecimento da anatomia do sistema linfático é importante para os clínicos. A hipótese de Starling explica como a maior parte dos líquidos e eletrólitos que entram nos espaços extracelulares provenientes dos capilares sanguíneos também é reabsorvida por eles. No entanto, até 3 litros de líquido deixam de ser reabsorvidos pelos capilares sanguíneos todos os dias. Além disso, parte da proteína plasmática passa para os espaços extracelulares, e o material originado nas próprias células teciduais que não atravessa as paredes dos capilares sanguíneos, como o citoplasma das células que se desintegram, entra continuamente no espaço em que vivem as células. Se houvesse acúmulo desse material nos espaços extracelulares, haveria osmose inversa, atraindo ainda mais líquido e provocando edema (excesso de líquido intersticial, que se manifesta na forma de inchaço). Entretanto, em condições normais o volume de líquido intersticial permanece quase constante e geralmente não há acúmulo de proteínas e resíduos celulares nos espaços extracelulares devido ao sistema linfático.
Assim, o sistema linfático constitui um tipo de sistema de “hiperfluxo” que permite a drenagem do excesso de líquido tecidual e das proteínas plasmáticas que extravasam para a corrente sanguínea, e também a remoção de resíduos resultantes da decomposição celular e infecção. Os componentes importantes do sistema linfático são (Figura I.27):
Plexos linfáticos, redes de capilares linfáticos cegos que se originam nos espaços extracelulares (intercelulares) da maioria dos tecidos. Como são formados por um endotélio muito fino, que não tem membrana basal, proteínas plasmáticas, bactérias, resíduos celulares, e até mesmo células inteiras (principalmente linfócitos), entram neles com facilidade junto com o excesso de líquido tecidual 
Vasos linfáticos (linfáticos), uma rede presente em quase todo o corpo, com vasos de paredes finas que têm muitas válvulas linfáticas. Em indivíduos vivos, há saliências nos locais de cada uma das válvulas, que estão bem próximas, o que deixa os vasos linfáticos com a aparência de um colar de contas. Os capilares e os vasos linfáticos estão presentes em quase todos os lugares onde há capilares sanguíneos, com exceção, por exemplo, dos dentes, ossos, medula óssea e todo o sistema nervoso central (o excesso de líquido tecidual drena para o líquido cerebrospinal) 
Linfa, o líquido tecidual que entra nos capilares linfáticos e é conduzido por vasos linfáticos. Geralmente, a linfa transparente, aquosa e ligeiramente amarela tem composição semelhante à do plasma sanguíneo
Linfonodos, pequenas massas de tecido linfático, encontradas ao longo do trajeto dos vasos linfáticos, que filtram a linfa em seu trajeto até o sistema venoso (Figura I.27B) 
Linfócitos, células circulantes do sistema imune que reagem contra materiais estranhos 
Órgãos linfoides, partes do corpo que produzem linfócitos, como timo, medula óssea vermelha, baço, tonsilas e os nódulos linfáticos solitários e agregados nas paredes do sistema digestório e no apêndice vermiforme.
Os vasos linfáticos superficiais, mais numerosos que as veias no tecido subcutâneo e que se anastomosam livremente,acompanham a drenagem venosa e convergem para ela. Esses vasos finalmente drenam nos vasos linfáticos profundos que acompanham as artérias e também recebem a drenagem de órgãos internos. É provável que os vasos linfáticos profundos também sejam comprimidos pelas artérias que acompanham, o que leva ao ordenhamento da linfa ao longo desses vasos que têm válvulas, da mesma forma descrita antes sobre as veias acompanhantes. Os vasos linfáticos superficiais e profundos atravessam os linfonodos (geralmente vários conjuntos) em seu trajeto no sentido proximal, tornando-se maiores à medida que se fundem com vasos que drenam regiões adjacentes. Os grandes vasos linfáticos entram em grandes vasos coletores, denominados troncos linfáticos, que se unem para formar o ducto linfático direito ou ducto torácico (Figura I.27A):
• O ducto linfático direito drena linfa do quadrante superior direito do corpo (lado direito da cabeça, pescoço e tórax, além do membro superior direito). Na raiz do pescoço, entra na junção das veias jugular interna direita e subclávia direita, o ângulo venoso direito
• O ducto torácico drena linfa do restante do corpo. Os troncos linfáticos que drenam a metade inferior do corpo unem-se no abdome, algumas vezes formando um saco coletor dilatado, a cisterna do quilo. A partir desse saco (se presente), ou da união dos troncos, o ducto torácico ascende, entrando no tórax e atravessando-o para chegar ao ângulo venoso esquerdo (junção das veias jugular interna esquerda e subclávia esquerda).
Embora esse seja o padrão de drenagem típico da maior parte da linfa, os vasos linfáticos comunicam-se livremente com as veias em muitas partes do corpo. Sendo assim, a ligadura de um tronco simpático ou mesmo do próprio ducto torácico pode ter apenas um efeito transitório enquanto se estabelece um novo padrão de drenagem por intermédio das anastomoses linfaticovenosas — e posteriormente interlinfáticas — periféricas. 

Figura I.27 Sistema linfático. A. Padrão de drenagem linfática. Com exceção do quadrante superior direito do corpo (rosa), a linfa drena para o ângulo venoso esquerdo através do ducto torácico. O quadrante superior direito drena para o ângulo venoso direito, geralmente através de um ducto linfático direito. A linfa normalmente atravessa vários grupos de linfonodos, em uma ordem geralmente previsível, antes de entrar no sistema venoso. B. Esquema ilustrativo do fluxo linfático dos espaços extracelulares através de um linfonodo. A setas pretas pequenas indicam o fluxo (saída) de líquido intersticial dos capilares sanguíneos e (absorção) pelos capilares linfáticos.

Outras funções do sistema linfático incluem:
Absorção e transporte da gordura dos alimentos. Capilares linfáticos especiais, denominados lácteos, recebem todos os lipídios e vitaminas lipossolúveis absorvidos pelo intestino. Em seguida, o líquido leitoso, quilo, é conduzido pelos vasos linfáticos viscerais para o ducto torácico, e daí para o sistema venoso
Formação de um mecanismo de defesa do corpo. Quando há drenagem de proteína estranha de uma área infectada, anticorpos específicos contra a proteína são produzidos por células imunologicamente competentes e/ou linfócitos e enviados para a área infectada.

SISTEMA LINFÁTICO 
Disseminação do câncer

O câncer invade o corpo por contiguidade (crescimento para o tecido adjacente) ou por metástase (a disseminação de células tumorais para locais distantes do tumor original ou primário). A metástase pode ocorrer de três formas:
1. Semeadura direta das membranas serosas das cavidades corporais
2. Disseminação linfogênica (pelos vasos linfáticos)
3. Disseminação hematogênica (pelos vasos sanguíneos).

É surpreendente que muitas vezes até mesmo uma fina lâmina fascial ou membrana serosa impeça a invasão tumoral. No entanto, quando um câncer penetra um espaço potencial, é provável que haja semeadura direta das cavidades — isto é, de suas membranas serosas.
A disseminação linfogênica é a via mais comum de disseminação inicial de carcinomas (tumores epiteliais), o tipo mais comum de câncer. A s células que se desprendem do tumor primário entram nos vasos linfáticos e seguem através deles. A s células presentes na linfa são filtradas e aprisionadas pelos linfonodos, que assim se tornam locais de câncer secundário (metastático).
O padrão de acometimento dos linfonodos pelo câncer segue as vias naturais da drenagem linfática. A ssim, ao remover um tumor potencialmente metastático, os cirurgiões determinam o estágio da metástase (avaliam o grau de disseminação do câncer) removendo e examinando linfonodos que recebem linfa do órgão ou região na ordem em que a linfa normalmente passa por eles. Portanto, é importante que o médico conheça a drenagem linfática “de trás para a frente” — isto é, (1) que saiba quais linfonodos devem ser afetados quando um tumor é identificado em um determinado local ou órgão (e a ordem na qual recebem linfa) e (2) que seja capaz de determinar os prováveis locais de câncer primário (origens da metástase) quando é detectado um linfonodo aumentado. Os linfonodos cancerosos aumentam à medida que crescem as células tumorais em seu interior; entretanto, ao contrário dos linfonodos infectados edemaciados, geralmente não são dolorosos quando comprimidos.
A disseminação hematogênica é a via mais comum para a metástase dos sarcomas (cânceres do tecido conjuntivo) menos comuns (porém mais malignos). Como as veias são mais abundantes e têm paredes mais finas, que oferecem menor resistência, a metástase ocorre com maior frequência por via venosa do que arterial. Como as células no sangue seguem o fluxo venoso, o fígado e os pulmões são os locais mais comuns de sarcomas secundários. Em geral, não é difícil o tratamento ou a retirada de um tumor primário, mas o tratamento ou a retirada de todos os linfonodos afetados ou de outros tumores secundários (metastáticos) pode ser impossível (Cotran et al., 1999).

Linfangite, linfadenite e linfedema

A linfangite e a linfadenite são inflamações secundárias dos vasos linfáticos e linfonodos, respectivamente. Esses distúrbios podem ocorrer quando o sistema linfático participa do transporte de substâncias químicas ou bactérias após lesão ou infecção grave. Os vasos linfáticos, normalmente ocultos, podem ser vistos como estrias vermelhas na pele, e os linfonodos sofrem aumento doloroso. Esse distúrbio é perigoso porque a infecção não contida pode causar septicemia. O linfedema, um tipo localizado de edema, ocorre quando não há drenagem da linfa de uma área do corpo. Por exemplo, se os linfonodos cancerosos forem removidos cirurgicamente da axila, pode haver linfedema do membro. Os tumores de células sólidas podem penetrar os vasos linfáticos e formar pequenos êmbolos celulares, que podem se desprender e seguir até os linfonodos regionais. Dessa forma, pode haver disseminação linfogênica adicional para outros tecidos e órgãos.

Pontos-chave : SISTEMA LINFÁTICOO sistema linfático drena o excesso de líquido dos espaços extracelulares para a corrente sanguínea. ♦ O sistema linfático também é uma parte importante do sistema de defesa do corpo. ♦ Os componentes importantes do sistema linfático são as redes de capilares linfáticos, os plexos linfáticos; os vasos linfáticos; a linfa; os linfonodos; os linfócitos; e os órgãos linfoides. ♦ O sistema linfático oferece uma via (relativamente) previsível para a disseminação de alguns tipos de células cancerosas em todo o corpo. ♦ A inflamação dos vasos linfáticos e/ou o aumento dos linfonodos é um indicador importante de possível lesão, infecção ou doença (p. ex., câncer).

REFERÊNCIA BIBLIOGRÁFICA:
  MOORE, K.L. - ANATOMIA ORIENTADA PARA A CLÍNICA, 6ªED, 
GUANABARA KOOGAN, 2011. 


quinta-feira, 14 de abril de 2016

SISTEMA CIRCULATÓRIO

O sistema circulatório transporta líquido por todo o corpo; é formado pelo coração, pelos vasos sanguíneos e vasos linfáticos. O coração e os vasos sanguíneos formam a rede de transporte de sangue. Por intermédio desse sistema, o coração bombeia sangue ao longo da vasta rede de vasos sanguíneos do corpo. O sangue conduz nutrientes, oxigênio e resíduos que entram e saem das células.

Circuitos vasculares

O coração consiste em duas bombas musculares que, embora adjacentes, atuam em série, dividindo a circulação em dois componentes: os circuitos ou circulações pulmonar e sistêmica (Figura I.22A e B). O ventrículo direito impulsiona o sangue pobre em oxigênio que retorna da circulação sistêmica para os pulmões por meio das artérias pulmonares. O dióxido de carbono é trocado por oxigênio nos capilares pulmonares e, então, o sangue rico em oxigênio é reconduzido pelas veias pulmonares ao átrio esquerdo do coração. Esse circuito, que tem início no ventrículo direito, passa pelos pulmões e chega ao átrio esquerdo, é a circulação pulmonar. O ventrículo esquerdo impulsiona o sangue rico em oxigênio que chega ao coração, proveniente da circulação pulmonar, por meio das artérias sistêmicas (aorta e seus ramos), e há troca de oxigênio e nutrientes por dióxido de carbono no restante dos capilares do corpo. O sangue pobre em oxigênio retorna ao átrio direito através das veias sistêmicas (tributárias das veias cavas superior e inferior). Esse circuito, do ventrículo esquerdo ao átrio esquerdo, é a circulação sistêmica.

A circulação sistêmica, na verdade, consiste em muitos circuitos paralelos que servem às várias regiões e sistemas do corpo (Figura I.22C).


Vasos sanguíneos


Existem três tipos de vasos sanguíneos: artérias, veias e capilares (Figura I.23). O sangue sai do coração sob alta pressão e é distribuído para o corpo por um sistema ramificado de artérias com paredes espessas. Os vasos de distribuição final, arteríolas, levam sangue oxigenado para os capilares. Os capilares formam um leito capilar, onde ocorre troca de oxigênio, nutrientes, resíduos e outras substâncias com o líquido extracelular. O sangue do leito capilar entra em vênulas de paredes finas, semelhantes a capilares largos. As vênulas drenam para pequenas veias que se abrem em veias maiores. As veias maiores, que são as veias cavas superior e inferior, reconduzem o sangue pouco oxigenado para o coração.

A maioria dos vasos sanguíneos do sistema circulatório tem três camadas ou túnicas:

Túnica íntima, um revestimento interno formado por uma única camada de células epiteliais muito achatadas, o endotélio, sustentado por delicado tecido conjuntivo. Os capilares são formados apenas por essa túnica, e os capilares sanguíneos também têm uma membrana basal de sustentação
Túnica média, uma camada intermediária que consiste basicamente em músculo liso
Túnica externa, uma bainha ou camada externa de tecido conjuntivo.
Figura I.22 A circulação. A. Esquema ilustrativo da organização anatômica das duas bombas musculares (câmaras direitas e esquerdas do coração) que servem às circulações pulmonar e sistêmica. B. Esquema ilustrativo da circulação corporal, representando as câmaras direitas e esquerdas como duas bombas em série. As circulações pulmonar e sistêmica são, na verdade, componentes em série de um circuito contínuo. C. Um esquema mais detalhado mostra que a circulação sistêmica consiste, na verdade, em muitos circuitos paralelos que servem a vários órgãos e regiões do corpo.

A túnica média é a mais variável. Artérias, veias e vasos linfáticos são distinguidos pela espessura dessa camada em relação ao tamanho do lúmen, sua organização, e, no caso das artérias, de quantidades variáveis de fibras elásticas.

ARTÉRIAS

  As artérias são vasos sanguíneos que conduzem sangue sob pressão relativamente alta (em comparação com as veias correspondentes) do coração e distribuem-no para o corpo (Figura I.24A). O sangue atravessa artérias de calibre decrescente. A distinção dos diferentes tipos de artérias é feita com base no tamanho geral, quantidade relativa de tecido elástico ou muscular na túnica média (Figura I.23), espessura da parede em relação ao lúmen e função. O tamanho e o tipo das artérias formam um continuum — isto é, há uma mudança gradual das características morfológicas de um tipo para outro. 
 
Figura I.23 Estrutura do vaso sanguíneo. As paredes da maioria dos vasos sanguíneos têm três camadas concêntricas de tecido, denominadas túnicas. Com menos músculo, as veias têm paredes mais finas do que suas artérias acompanhantes e têm lumens mais amplos, geralmente se apresentando achatadas em cortes de tecido.

Existem três tipos de artérias:



As grandes artérias elásticas (artérias condutoras) têm muitas camadas elásticas (lâminas de fibras elásticas) em suas paredes. Inicialmente, essas grandes artérias recebem o débito cardíaco. A elasticidade permite sua expansão quando recebem o débito cardíaco dos ventrículos, minimizando a variação de pressão, e o retorno ao tamanho normal entre as contrações ventriculares, quando continuam a empurrar o sangue para as artérias médias a jusante. Isso mantém a pressão no sistema arterial entre as contrações cardíacas (no momento em que a pressão ventricular cai a zero). Em geral, isso minimiza o declínio da pressão arterial quando o coração contrai e relaxa. Exemplos de grandes artérias elásticas são a aorta, as artérias que se originam no arco da aorta (tronco braquiocefálico, artéria subclávia e artéria carótida), além do tronco e das artérias pulmonares (Figura I.24A)

As artérias musculares médias (artérias distribuidoras) têm paredes formadas principalmente por fibras musculares lisas dispostas de forma circular. Sua capacidade de reduzir seu diâmetro (vasoconstrição) controla o fluxo sanguíneo para diferentes partes do corpo, conforme exigido pela circunstância (p. ex., atividade, termorregulação). As contrações pulsáteis de suas paredes musculares (seja qual for o diâmetro do lúmen) causam a constrição temporária e rítmica dos lumens em sequência progressiva, propelindo e distribuindo o sangue para várias partes do corpo. As artérias nominadas, inclusive aquelas observadas na parede do corpo e nos membros durante a dissecção, como as artérias braquial ou femoral, são, em sua maioria, artérias musculares médias.

As pequenas artérias e arteríolas têm lumens relativamente estreitos e paredes musculares espessas. O grau de enchimento dos leitos capilares e o nível da pressão arterial no sistema vascular são controlados principalmente pelo grau de tônus (firmeza) no músculo liso das paredes arteriolares. Se o tônus for maior que o normal, ocorre hipertensão (aumento da pressão arterial). As pequenas artérias geralmente não têm nomes nem identificação específica durante a dissecção, e as arteríolas só podem ser vistas quando ampliadas.

As anastomoses (comunicações) entre os múltiplos ramos de uma artéria oferecem vários possíveis desvios para o fluxo sanguíneo em caso de obstrução do trajeto habitual por compressão pela posição de uma articulação, doença ou ligadura cirúrgica. Quando um canal principal é ocluído, os canais opcionais menores costumam aumentar de tamanho em um período relativamente curto, proporcionando uma circulação colateral que garante o suprimento sanguíneo para estruturas distais à obstrução. Entretanto, é preciso tempo para que haja abertura adequada das vias colaterais; elas geralmente são insuficientes para compensar a oclusão ou ligadura súbita. 

Há áreas, porém, em que a circulação colateral inexiste ou é inadequada para substituir o canal principal. As artérias que não se anastomosam com as artérias adjacentes são artérias terminais verdadeiras (anatômicas). A oclusão de uma artéria terminal interrompe o suprimento sanguíneo para a estrutura ou segmento do órgão que irriga. As artérias terminais verdadeiras suprem a retina, por exemplo, onde a oclusão resulta em cegueira. Embora não sejam artérias terminais verdadeiras, artérias terminais funcionais (artérias com anastomoses insuficientes) irrigam segmentos do encéfalo, fígado, rins, baço e intestinos; também podem ser encontradas no coração.
Figura I.24 Parte sistêmica do sistema circulatório. As artérias e veias mostradas transportam sangue rico em oxinio do coração para os leitos capilares sistêmicos e reconduzem o sangue pobre em oxinio dos leitos capilares para o coração, respectivamente, formando a circulação sistêmica. Embora comumente sejam representadas e consideradas como um único vaso, conforme é mostrado aqui, as veias profundas dos membros geralmente se apresentam como pares de veias acompanhantes.



VEIAS

As veias geralmente reconduzem o sangue pobre em oxigênio dos leitos capilares para o coração, o que confere às veias uma aparência azul-escura (Figura I.24B). As grandes veias pulmonares são atípicas porque conduzem sangue rico em oxigênio dos pulmões para o coração. Em vista da menor pressão arterial no sistema venoso, as paredes (especificamente, a túnica média) das veias são mais finas que as das artérias acompanhantes (Figura I.23). Normalmente, as veias não pulsam e não ejetam nem jorram sangue quando seccionadas. Existem três tamanhos de veias: 

• As vênulas são as menores veias. As vênulas drenam os leitos capilares e se unem a vasos semelhantes para formar pequenas veias. A observação das vênulas requer ampliação. As pequenas veias são tributárias de veias maiores que se unem para formar plexos venosos, como o arco venoso dorsal do pé (Figura I.24B). As pequenas veias não recebem nome 

• As veias médias drenam plexos venosos e acompanham as artérias médias. Nos membros e em alguns outros locais onde a força da gravidade se opõe ao fluxo sanguíneo as veias médias têm válvulas venosas, válvulas passivas que permitem o fluxo sanguíneo em direção ao coração, mas não no sentido inverso (Figura I.26). Os exemplos de veias médias incluem as denominadas veias superficiais (veias cefálica e basílica dos membros superiores e as veias safenas magna e parva dos membros inferiores) e as veias acompanhantes que recebem o mesmo nome da artéria que acompanham (Figura I.24B).

• As grandes veias são caracterizadas por largos feixes de músculo liso longitudinal e uma túnica externa bem desenvolvida. Um exemplo é a veia cava superior.

O número de veias é maior que o de artérias. Embora suas paredes sejam mais finas, seu diâmetro costuma ser maior que o diâmetro da artéria correspondente. As paredes finas proporcionam grande capacidade de expansão, e as veias se expandem quando o retorno do sangue para o coração é impedido por compressão ou por pressão interna (p. ex., após inspirar profundamente e prender a respiração; esta é a manobra de Valsalva). 
Como as artérias e veias formam um circuito, seria esperado que metade do volume sanguíneo estivesse nas artérias e metade nas veias. No entanto, em razão do maior diâmetro e à capacidade de expansão das veias, em geral apenas 20% do sangue estão nas artérias, enquanto 80% encontram-se nas veias. 
Embora, para simplificar, frequentemente sejam representadas isoladas nas ilustrações, as veias tendem a ser duplas ou múltiplas. Aquelas que acompanham as artérias profundas — veias acompanhantes— circundam-nas em uma rede com ramificações irregulares (Figura I.25). Essa organização serve como trocador de calor em contracorrente, no qual o sangue arterial morno aquece o sangue venoso mais frio em seu retorno de uma extremidade fria para o coração. As veias acompanhantes ocupam uma bainha vascular fascial relativamente rígida junto com a artéria que acompanham. Consequentemente, quando a artéria se expande durante a contração do coração, as veias são distendidas e achatadas, o que ajuda a conduzir o sangue venoso para o coração — uma bomba arteriovenosa.
Figura I.25 Veias acompanhantes. Embora a maioria das veias do tronco ocorra como grandes vasos isolados, as veias nos membros apresentam-se como dois ou mais vasos menores que acompanham uma artéria em uma bainha vascular comum.

As veias sistêmicas são mais variáveis do que as artérias, e as anastomoses venosas — comunicações naturais, diretas ou indiretas, entre duas veias — são mais frequentes. A expansão externa dos ventres dos músculos esqueléticos que se contraem nos membros, limitada pela fáscia muscular, comprime as veias, “ordenhando” o sangue para cima em direção ao coração; outro tipo (musculovenoso) de bomba venosa (Figura I.26). As válvulas venosas interrompem as colunas de sangue, aliviando, assim, a pressão nas partes mais baixas e só permitindo que o sangue venoso flua em direção ao coração. A congestão venosa que ocorre nos pés quentes e cansados ao fim de um dia de trabalho é aliviada repousando-se os pés sobre um banco mais alto que o tronco (do corpo). Essa posição dos pés também ajuda no retorno venoso do sangue para o coração.


CAPILARES SANGUÍNEOS


Para beneficiar as células que formam os tecidos do corpo, o oxigênio e os nutrientes conduzidos pelas artérias precisam sair dos vasos transportadores e passar para o espaço extravascular entre as células, o espaço extracelular (intercelular) no qual vivem as células. Os capilares são tubos endoteliais simples que unem os lados arterial e venoso da circulação e permitem a troca de materiais com o líquido extracelular (LEC) ou intersticial. Os capilares geralmente são organizados em leitos capilares, redes que unem as arteríolas e as vênulas (Figura I.23). O sangue entra nos leitos capilares por meio das arteríolas que controlam o fluxo e é drenado pelas vênulas.

Figura I.26 Bomba musculovenosa. As contrações musculares nos membros associam-se às válvulas venosas para deslocar o sangue em direção ao coração. A expansão externa dos ventres dos músculos que se contraem é limitada pela fáscia muscular e se torna uma força compressiva que impulsiona o sangue contra a gravidade.

À medida que a pressão hidrostática nas arteríolas força a entrada e a passagem do sangue no leito capilar, também força a saída de líquido contendo oxigênio, nutrientes e outros materiais do sangue na extremidade arterial do leito capilar (a montante) para os espaços extracelulares, permitindo a troca com células do tecido adjacente. As paredes capilares, porém, são relativamente impermeáveis às proteínas plasmáticas. A jusante, na extremidade venosa do leito, a maior parte desse LEC— agora contendo resíduos e dióxido de carbono — é reabsorvida pelo sangue graças à pressão osmótica gerada pela maior concentração de proteínas no capilar. (Apesar de já estar bem estabelecido, esse princípio é denominado hipótese de Starling.)

Em algumas áreas, como nos dedos das mãos, há conexões diretas entre as pequenas arteríolas e vênulas proximais aos leitos capilares que irrigam e drenam. Os locais dessas comunicações — anastomoses arteriolovenulares (arteriovenosas) (AAV) — permitem que o sangue passe diretamente do lado arterial para o lado venoso da circulação sem atravessar os capilares. A pele tem muitos shunts AV, que são importantes na conservação do calor corporal.


Em algumas situações, o sangue atravessa dois leitos capilares antes de voltar ao coração; um sistema venoso que une dois leitos capilares constitui um sistema venoso porta. O sistema venoso no qual o sangue rico em nutrientes passa dos leitos capilares do sistema digestório para os leitos capilares ou sinusoides do fígado — o sistema porta do fígado — é o principal exemplo (Figura I.22C).

SISTEMA CIRCULATÓRIO 

Arteriosclerose | Isquemia e infarto
A doença arterial adquirida mais comum — e um achado comum na dissecção de cadáveres — em países desenvolvidos é a arteriosclerose um grupo de doenças caracterizadas por espessamento e perda da elasticidade das paredes arteriais. Uma forma comum, a aterosclerose, está associada ao acúmulo de gordura (principalmente colesterol) nas paredes arteriais. Há formação de um depósito de cálcio na placa ateromatosa (ateroma) — áreas ou elevações amarelas, endurecidas, bem demarcadas na superfície da túnica íntima das artérias (Figura BI.8A ). O estreitamento arterial e a irregularidade superficial que se seguem podem resultar em trombose (formação de um coágulo intravascular local ou trombo), que pode ocluir a artéria ou ser levado para a corrente sanguínea e obstruir vasos menores distais na forma de êmbolo (Figura BI.8B). A s consequências da aterosclerose incluem isquemia (redução do suprimento sanguíneo para um órgão ou região) e infarto (necrose de uma área de tecido ou um órgão, decorrente da diminuição do suprimento sanguíneo). Essas consequências são ainda mais importantes em relação ao coração (cardiopatia isquêmica e infarto do miocárdio), encéfalo (acidente vascular cerebral) e partes distais dos membros (gangrena). 


                   Figura BI.8


Varizes

Quando perdem a elasticidade, as paredes das veias se tornam fracas. Uma veia enfraquecida dilata sob a pressão da sustentação de uma coluna de sangue contra a gravidade. Isso resulta no surgimento de varizes — veias anormalmente distorcidas e dilatadas — observadas com maior frequência nas pernas (Figura BI.9). A s veias varicosas têm um calibre maior que o normal, e as válvulas venosas são incompetentes ou foram destruídas por inflamação. A ssim, a coluna de sangue que ascende em direção ao coração é contínua, aumentando a pressão sobre as paredes enfraquecidas e agravando o problema de varicosidade. A s varizes também ocorrem em caso de degeneração da fáscia muscular. A fáscia incompetente não é capaz de conter a expansão dos músculos que se contraem; assim, a bomba musculovenosa (musculofascial) não é efetiva.



Figura BI.9



Pontos-chave

SISTEMA CIRCULATÓRIO

O sistema circulatório é formado pelo coração e pelos vasos sanguíneos — artérias, veias e capilares. ♦ A s artérias e veias (e os vasos linfáticos) têm três camadas ou túnicas — túnica íntima, túnica média e túnica externa. ♦ A s artérias têm fibras elásticas e musculares em suas paredes, que permitem a propulsão do sangue em todo o sistema circulatório. ♦ A s veias têm paredes mais finas do que as artérias e são distinguidas por válvulas que impedem o refluxo de sangue. ♦ Os capilares, como simples tubos endoteliais, são os menores vasos sanguíneos e fazem a ligação entre as menores artérias (arteríolas) e veias (vênulas).

REFERÊNCIA BIBLIOGRÁFICA:
  MOORE, K.L. - ANATOMIA ORIENTADA PARA A CLÍNICA, 6ªED, 
GUANABARA KOOGAN, 2011.